Ela Numerical Ranges of an Operator on an Indefinite Inner Product Space

نویسنده

  • Frank Uhlig
چکیده

For n n complex matrices A and an n n Hermitian matrix S, we consider the S-numerical range of A and the positive S-numerical range of A de ned by WS(A) = hAv; viS hv; viS : v 2 I Cn; hv; viS 6= 0

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Numerical Ranges of Quadratic Operators in Spaces with an Indefinite Metric

The numerical range of a quadratic operator acting on an indefinite inner product space is shown to have a hyperbolical shape. This result is extended to different kinds of indefinite numerical ranges, namely, indefinite higher rank numerical ranges and indefinite Davis-Wielandt shells.

متن کامل

Ela Shells of Matrices in Indefinite Inner Product Spaces

The notion of the shell of a Hilbert space operator, which is a useful generalization (proposed by Wielandt) of the numerical range, is extended to operators in spaces with an indefinite inner product. For the most part, finite dimensional spaces are considered. Geometric properties of shells (convexity, boundedness, being a subset of a line, etc.) are described, as well as shells of operators ...

متن کامل

Numerical ranges of quadratic operators in spaces with an indefinte metric

The numerical range of a quadratic operator acting on an indefinite inner product space is shown to have a hyperbolical shape. This result is extended to different kinds of indefinite numerical ranges, namely, indefinite higher rank numerical ranges and indefinite Davis-Wielandt shells.

متن کامل

On Generalized Numerical Ranges of Operators on an Indefinite Inner Product Space

In this paper, numerical ranges associated to operators on an indefinite inner product space are investigated. Boundary generating curves, corners, shapes and computer generations of these sets are studied. In particular, the MurnaghanKippenhahn theorem for the classical numerical range is generalized.

متن کامل

On the Geometry of Numerical Ranges in Spaces with an Indefinite Inner Product

Geometric properties of the numerical ranges of operators on an indefinite inner product space are investigated. In particular, classes of matrices are presented such that the boundary generating curves of the J-numerical range are hyperbolical. The curvature of the J-numerical range at a boundary point is studied, generalizing results of Fiedler on the classical numerical range.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999